Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Neural Plast ; 2023: 6496539, 2023.
Article in English | MEDLINE | ID: covidwho-2314361

ABSTRACT

The structural connectivity from the primary olfactory cortex to the main secondary olfactory areas was previously reported as relatively increased in the medial orbitofrontal cortex in a cohort of 27 recently SARS-CoV-2-infected (COV+) subjects, of which 23/27 had clinically confirmed olfactory loss, compared to 18 control (COV-) normosmic subjects, who were not previously infected. To complement this finding, here we report the outcome of an identical high angular resolution diffusion MRI analysis on follow-up data sets collected in 18/27 COV+ subjects (10 males, mean age ± SD: 38.7 ± 8.1 years) and 10/18 COV- subjects (5 males, mean age ± SD: 33.1 ± 3.6 years) from the previous samples who repeated both the olfactory functional assessment and the MRI examination after ~1 year. By comparing the newly derived subgroups, we observed that the increase in the structural connectivity index of the medial orbitofrontal cortex was not significant at follow-up, despite 10/18 COV+ subjects were still found hyposmic after ~1 year from SARS-CoV-2 infection. We concluded that the relative hyperconnectivity of the olfactory cortex to the medial orbitofrontal cortex could be, at least in some cases, an acute or reversible phenomenon linked to the recent SARS-CoV-2 infection with associated olfactory loss.


Subject(s)
COVID-19 , Male , Humans , Follow-Up Studies , SARS-CoV-2 , Brain/diagnostic imaging , Frontal Lobe
2.
Nat Aging ; 2(12): 1130-1137, 2022 12.
Article in English | MEDLINE | ID: covidwho-2243217

ABSTRACT

As coronavirus disease 2019 (COVID-19) and aging are both accompanied by cognitive decline, we hypothesized that COVID-19 might lead to molecular signatures similar to aging. We performed whole-transcriptome analysis of the frontal cortex, a critical area for cognitive function, in individuals with COVID-19, age-matched and sex-matched uninfected controls, and uninfected individuals with intensive care unit/ventilator treatment. Our findings indicate that COVID-19 is associated with molecular signatures of brain aging and emphasize the value of neurological follow-up in recovered individuals.


Subject(s)
COVID-19 , Humans , Aging/genetics , Brain , Frontal Lobe , Gene Expression Profiling
3.
Pediatr Infect Dis J ; 41(8): 663-665, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1948550

ABSTRACT

We describe 3 children with new-onset neurocognitive problems after coronavirus disease 2019 (COVID-19), that showed, at the brain [18F]-fluorodeoxyglucose positron emission tomography/computed tomography, hypometabolism in the left orbito-frontal region. The voxel-wise analysis confirmed a cluster of hypometabolic voxels in this region with a peak at -18/46/-4mm (179 voxels, T-Score 8.1). These findings may explain neurocognitive symptoms that some children develop after COVID-19 and require further investigations.


Subject(s)
COVID-19 , Brain , COVID-19/complications , COVID-19/diagnostic imaging , Child , Fluorodeoxyglucose F18 , Frontal Lobe/diagnostic imaging , Humans , Positron-Emission Tomography/methods , Post-Acute COVID-19 Syndrome
4.
Adv Biol (Weinh) ; 6(8): e2101310, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1877544

ABSTRACT

Although transcriptomic studies of SARS-CoV-2-infected brains have depicted variability in gene expression, the landscape of deregulated cell-specific regulatory circuits has not been elucidated yet. Hence, bulk and single-cell RNA-seq data are analyzed to gain detailed insights. Initially, two ceRNA networks with 19 and 3 differentially expressed (DE) hub lncRNAs are reconstructed in SARS-CoV-2 infected Frontal Cortex (FC) and Choroid Plexus (CP), respectively. Functional and pathway enrichment analyses of downstream mRNAs of deregulated ceRNA axes demonstrate impairment of neurological processes. Mapping of hub lncRNA-mRNA pairs from bulk RNA-seq with snRNA-seq data has indicated that NORAD, NEAT1, and STXBP5-AS1 are downregulated across 4, 4, and 2 FC cell types, respectively. At the same time, MIRLET7BHG and MALAT1 are upregulated in excitatory neurons of FC and neurons of CP, respectively. Here, it is hypothesized that downregulation of NORAD, NEAT1, and STXBP5-AS1, and upregulation of MIRLET7BHG and MALAT1 might deregulate respectively 51, 6, and 37, and 31 and 19 mRNAs in cell types of FC and CP. Afterward, 13 therapeutic miRNAs are traced that might safeguard against deregulated lncRNA-mRNA pairs of NORAD, NEAT1, and MIRLET7BHG in FC. This study helps to explain the plausible mechanism of post-COVID neurological manifestation and also to devise therapeutics against it.


Subject(s)
COVID-19 , RNA, Long Noncoding , COVID-19/genetics , Choroid Plexus/metabolism , Frontal Lobe/metabolism , Gene Regulatory Networks , Humans , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , SARS-CoV-2 , Transcriptome/genetics
5.
Acta Neurol Scand ; 146(2): 194-198, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1807012

ABSTRACT

BACKGROUND: Olfactory dysfunction is common during SARS-CoV-2 infection. The pathophysiology of the persistence of this symptom and the potential relationship with central nervous system involvement is unknown. AIM OF THE STUDY: To evaluate the neural correlates of persistent olfactory dysfunction in a series of patients with post-COVID syndrome. METHODS: Eighty-two patients with post-COVID syndrome were assessed with the Brief Smell Identification Test and a multimodal MRI study including 3D-T1, T2-FLAIR, diffusion-tensor imaging, and arterial spin labeling. Olfactory and neuroimaging examinations were performed 11.18 ± 3.78 months after the acute infection. Voxel-based brain mapping analyses were conducted to correlate the olfactory test with brain volumes, white matter microstructure, and brain perfusion. RESULTS: Olfactory dysfunction was associated with lower tissue perfusion in the orbital and medial frontal regions in the arterial spin labeling sequence. Conversely, no statistically significant findings were detected in brain volumes and diffusion-tensor imaging. Mild changes in paranasal sinuses and nasal cavities were detected in 9.75% of cases, with no association with olfactory deficits. CONCLUSIONS: We provide new insights regarding the pathophysiology of persistent olfactory dysfunction after COVID-19, involving the main brain regions associated with the olfactory system.


Subject(s)
COVID-19 , Olfaction Disorders , COVID-19/complications , Frontal Lobe/diagnostic imaging , Humans , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology , Perfusion , SARS-CoV-2 , Smell
8.
J Neurophysiol ; 126(4): 1221-1233, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1381185

ABSTRACT

Frontal-midline theta (FMT) oscillations are increased in amplitude during cognitive control tasks. Since these tasks often conflate cognitive control and cognitive effort, it remains unknown if FMT amplitude maps onto cognitive control or effort. To address this gap, we utilized the glucose facilitation effect to manipulate cognitive effort without changing cognitive control demands. We performed a single-blind, crossover human study in which we provided participants with a glucose drink (control session: volume-matched water) to reduce cognitive effort and improve performance on a visuospatial working memory task. Following glucose consumption, participants performed the working memory task at multiple time points of a 3-h window to sample across the rise and fall of blood glucose. Using high-density electroencephalography (EEG), we calculated FMT amplitude during the delay period of the working memory task. Source localization analysis revealed that FMT oscillations originated from bilateral prefrontal cortex. We found that glucose increased working memory accuracy during the high working memory load condition but decreased FMT amplitude. The decrease in FMT amplitude coincided with both peak blood glucose elevation and peak performance enhancement for glucose relative to water. Therefore, the positive association between glucose consumption and task performance provided causal evidence that the amplitude of FMT oscillations may correspond to cognitive effort, rather than cognitive control. Due to the COVID-19 pandemic, data collection was terminated prematurely; the preliminary nature of these findings due to small sample size should be contextualized by rigorous experimental design and use of a novel causal perturbation to dissociate cognitive effort and cognitive control.NEW & NOTEWORTHY We investigated whether frontal-midline theta (FMT) oscillations tracked with cognitive control or cognitive effort by simultaneous manipulation of cognitive control demands in a working memory task and causal perturbation of cognitive effort using glucose consumption. Facilitation of performance from glucose consumption corresponded with decreased FMT amplitude, which provided preliminary causal evidence for a relationship between FMT amplitude with cognitive effort.


Subject(s)
Cognition , Frontal Lobe/physiology , Memory, Short-Term/physiology , Theta Rhythm , Adult , Blood Glucose , Cross-Over Studies , Electroencephalography , Female , Glucose/administration & dosage , Glucose/metabolism , Humans , Male , Middle Aged , Pilot Projects , Spatial Processing/physiology , Young Adult
9.
Pediatr Infect Dis J ; 40(9): e340-e343, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1370831

ABSTRACT

AIM: To describe a term newborn with acquired severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and multisystem involvement including seizures associated to ischemic lesions in the brain. BACKGROUND: Coronavirus disease 2019 (COVID-19) is predominantly a respiratory infection, but it may affect many other systems. Most pediatric COVID-19 cases range from asymptomatic to mild-moderate disease. There are no specific clinical signs described for neonatal COVID-19 infections. In children, severe central nervous system compromise has been rarely reported. CASE DESCRIPTION: We describe a 17-day-old newborn who acquired a SARS-CoV-2 infection in a family meeting that was admitted for fever, seizures and lethargy and in whom consumption coagulopathy, ischemic lesions in the brain and cardiac involvement were documented. CONCLUSIONS: SARS-CoV-2 neonatal infection can be associated with multi-organic involvement. In our patient, significant central nervous system compromise associated to ischemic lesions and laboratory findings of consumption coagulopathy were found. CLINICAL SIGNIFICANCE: Although neonatal SARS-CoV-2 infections are infrequent, they can be associated with multi-organic involvement. Neonatologists and pediatricians should be aware of this unusual way of presentation of COVID-19 in newborn infants.


Subject(s)
Brain Ischemia/virology , COVID-19/complications , Infant, Newborn, Diseases/virology , SARS-CoV-2/isolation & purification , Acyclovir/therapeutic use , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Brain/diagnostic imaging , Brain Ischemia/pathology , COVID-19/pathology , Ceftriaxone/therapeutic use , Fever , Frontal Lobe/blood supply , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Humans , Infant, Newborn , Infant, Newborn, Diseases/drug therapy , Infant, Newborn, Diseases/pathology , Lethargy , Magnetic Resonance Imaging , Male , Nasopharynx/virology , Seizures , COVID-19 Drug Treatment
11.
PLoS One ; 16(7): e0254045, 2021.
Article in English | MEDLINE | ID: covidwho-1295522

ABSTRACT

Intolerance of uncertainty (IU) can influence emotional predictions, constructed by the brain (generation stage) to prearrange action (implementation stage), and update internal models according to incoming stimuli (updating stage). However, neurocomputational mechanisms by which IU affects emotional predictions are unclear. This high-density EEG study investigated if IU predicted event-related potentials (ERPs) and brain sources activity developing along the stages of emotional predictions, as a function of contextual uncertainty. Thirty-six undergraduates underwent a S1-S2 paradigm, with emotional faces and pictures as S1s and S2s, respectively. Contextual uncertainty was manipulated across three blocks, each with 100%, 75%, or 50% S1-S2 emotional congruency. ERPs, brain sources and their relationship with IU scores were analyzed for each stage. IU did not affect prediction generation. During prediction implementation, higher IU predicted larger Contingent Negative Variation in the 75% block, and lower left anterior cingulate cortex and supplementary motor area activations. During prediction updating, as IU increased P2 to positive S2s decreased, along with P2 and Late Positive Potential in the 75% block, and right orbito-frontal cortex activity to emotional S2s. IU was therefore associated with altered uncertainty assessment and heightened attention deployment during implementation, and to uncertainty avoidance, reduced attention to safety cues and disrupted access to emotion regulation strategies during prediction updating.


Subject(s)
Brain/diagnostic imaging , Emotions/physiology , Fear/physiology , Frontal Lobe/diagnostic imaging , Adult , Behavior/physiology , Brain/pathology , Brain/physiology , Brain Mapping , Contingent Negative Variation/physiology , Electroencephalography , Evoked Potentials/physiology , Face/physiology , Fear/psychology , Female , Forecasting , Frontal Lobe/pathology , Frontal Lobe/physiology , Humans , Male , Uncertainty , Young Adult
12.
Am J Respir Cell Mol Biol ; 65(4): 403-412, 2021 10.
Article in English | MEDLINE | ID: covidwho-1237350

ABSTRACT

Mechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by dysfunction of the frontal cortex and hippocampus. Although IL-6 is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether the inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model, VILI was simulated in anesthetized adult mice using a 35 cc/kg tidal volume mechanical ventilation model. There were two control groups, as follow: 1) spontaneously breathing or 2) anesthetized and mechanically ventilated with 10 cc/kg tidal volume to distinguish effects of anesthesia from VILI. Two hours before inducing VILI, mice were treated with either anti-IL-6 antibody, anti-IL-6 receptor antibody, or saline. Neuronal injury, stress, and inflammation were assessed using immunohistochemistry. CC3 (cleaved caspase-3), a neuronal apoptosis marker, was significantly increased in the frontal (P < 0.001) and hippocampal (P < 0.0001) brain regions and accompanied by significant increases in c-Fos and heat shock protein-90 in the frontal cortices of VILI mice compared with control mice (P < 0.001). These findings were not related to cerebral hypoxia, and there was no evidence of irreversible neuronal death. Frontal and hippocampal neuronal CC3 were significantly reduced with anti-IL-6 antibody (P < 0.01 and P < 0.0001, respectively) and anti-IL-6 receptor antibody (P < 0.05 and P < 0.0001, respectively) compared with saline VILI mice. In summary, VILI induces potentially reversible neuronal injury and inflammation in the frontal cortex and hippocampus, which is mitigated with systemic IL-6 inhibition. These data suggest a potentially novel neuroprotective role of systemic IL-6 inhibition that justifies further investigation.


Subject(s)
Antibodies/pharmacology , Apoptosis/drug effects , Delirium/metabolism , Interleukin-6/antagonists & inhibitors , Neurons/metabolism , Ventilator-Induced Lung Injury/metabolism , Animals , Delirium/drug therapy , Delirium/pathology , Disease Models, Animal , Female , Frontal Lobe/injuries , Frontal Lobe/metabolism , Frontal Lobe/pathology , HSP90 Heat-Shock Proteins/metabolism , Hippocampus/injuries , Hippocampus/metabolism , Hippocampus/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Mice , Neurons/pathology , Proto-Oncogene Proteins c-fos/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ventilator-Induced Lung Injury/drug therapy , Ventilator-Induced Lung Injury/pathology
13.
Brain Behav Immun ; 97: 13-21, 2021 10.
Article in English | MEDLINE | ID: covidwho-1233366

ABSTRACT

SARS-Cov-2 infection is frequently associated with Nervous System manifestations. However, it is not clear how SARS-CoV-2 can cause neurological dysfunctions and which molecular processes are affected in the brain. In this work, we examined the frontal cortex tissue of patients who died of COVID-19 for the presence of SARS-CoV-2, comparing qRT-PCR with ddPCR. We also investigated the transcriptomic profile of frontal cortex from COVID-19 patients and matched controls by RNA-seq analysis to characterize the transcriptional signature. Our data showed that SARS-CoV-2 could be detected by ddPCR in 8 (88%) of 9 examined samples while by qRT-PCR in one case only (11%). Transcriptomic analysis revealed that 11 genes (10 mRNAs and 1 lncRNA) were differential expressed when frontal cortex of COVID-19 patients were compared to controls. These genes fall into categories including hypoxia, hemoglobin-stabilizing protein, hydrogen peroxide processes. This work demonstrated that the quantity of viral RNA in frontal cortex is minimal and it can be detected only with a very sensitive method (ddPCR). Thus, it is likely that SARS-CoV-2 does not actively infect and replicate in the brain; its topography within encephalic structures remains uncertain. Moreover, COVID-19 may have a role on brain gene expression, since we observed an important downregulation of genes associated to hypoxia inducting factor system (HIF) that may inhibit the capacity of defense system during infection and oxigen deprivation, showing that hypoxia, well known multi organ condition associated to COVID-19, also marked the brain.


Subject(s)
COVID-19 , SARS-CoV-2 , Frontal Lobe , Humans , Transcriptome , Exome Sequencing
14.
J Alzheimers Dis ; 81(1): 75-81, 2021.
Article in English | MEDLINE | ID: covidwho-1215268

ABSTRACT

Acute delirium and other neuropsychiatric symptoms have frequently been reported in COVID-19 patients and are variably referred to as acute encephalopathy, COVID-19 encephalopathy, SARS-CoV-2 encephalitis, or steroid-responsive encephalitis. COVID-19 specific biomarkers of cognitive impairment are currently lacking, but there is some evidence that SARS-CoV-2 could preferentially and directly target the frontal lobes, as suggested by behavioral and dysexecutive symptoms, fronto-temporal hypoperfusion on MRI, EEG slowing in frontal regions, and frontal hypometabolism on 18F-FDG-PET imaging. We suggest that an inflammatory parainfectious process targeting preferentially the frontal lobes (and/or frontal networks) could be the underlying cause of these shared clinical, neurophysiological, and imaging findings in COVID-19 patients. We explore the biological mechanisms and the clinical biomarkers that might underlie such disruption of frontal circuits and highlight the need of standardized diagnostic procedures to be applied when investigating patients with these clinical findings. We also suggest the use of a unique label, to increase comparability across studies.


Subject(s)
Acute Febrile Encephalopathy/physiopathology , COVID-19/physiopathology , Frontal Lobe/physiopathology , Frontal Lobe/virology , SARS-CoV-2/pathogenicity , Acute Febrile Encephalopathy/diagnosis , Acute Febrile Encephalopathy/virology , Biomarkers/analysis , COVID-19/diagnosis , COVID-19/virology , Delirium/diagnosis , Delirium/physiopathology , Delirium/virology , Electroencephalography , Humans , Magnetic Resonance Imaging , Nerve Net/physiopathology , Virulence
16.
Clin Neurophysiol ; 132(3): 730-736, 2021 03.
Article in English | MEDLINE | ID: covidwho-1039319

ABSTRACT

OBJECTIVE: To study if limited frontotemporal electroencephalogram (EEG) can guide sedation changes in highly infectious novel coronavirus disease 2019 (COVID-19) patients receiving neuromuscular blocking agent. METHODS: 98 days of continuous frontotemporal EEG from 11 consecutive patients was evaluated daily by an epileptologist to recommend reduction or maintenance of the sedative level. We evaluated the need to increase sedation in the 6 h following this recommendation. Post-hoc analysis of the quantitative EEG was correlated with the level of sedation using a machine learning algorithm. RESULTS: Eleven patients were studied for a total of ninety-eight sedation days. EEG was consistent with excessive sedation on 57 (58%) and adequate sedation on 41 days (42%). Recommendations were followed by the team on 59% (N = 58; 19 to reduce and 39 to keep the sedation level). In the 6 h following reduction in sedation, increases of sedation were needed in 7 (12%). Automatized classification of EEG sedation levels reached 80% (±17%) accuracy. CONCLUSIONS: Visual inspection of a limited EEG helped sedation depth guidance. In a secondary analysis, our data supported that this determination may be automated using quantitative EEG analysis. SIGNIFICANCE: Our results support the use of frontotemporal EEG for guiding sedation in patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Electroencephalography/methods , Frontal Lobe/physiology , Hypnotics and Sedatives/administration & dosage , Machine Learning , Temporal Lobe/physiology , Aged , Anesthesia/methods , COVID-19/diagnosis , COVID-19/physiopathology , Cohort Studies , Electroencephalography/drug effects , Female , Humans , Intensive Care Units , Male , Middle Aged
17.
Neurobiol Dis ; 146: 105131, 2020 12.
Article in English | MEDLINE | ID: covidwho-872391

ABSTRACT

As researchers across the globe have focused their attention on understanding SARS-CoV-2, the picture that is emerging is that of a virus that has serious effects on the vasculature in multiple organ systems including the cerebral vasculature. Observed effects on the central nervous system include neurological symptoms (headache, nausea, dizziness), fatal microclot formation and in rare cases encephalitis. However, our understanding of how the virus causes these mild to severe neurological symptoms and how the cerebral vasculature is impacted remains unclear. Thus, the results presented in this report explored whether deleterious outcomes from the SARS-CoV-2 viral spike protein on primary human brain microvascular endothelial cells (hBMVECs) could be observed. The spike protein, which plays a key role in receptor recognition, is formed by the S1 subunit containing a receptor binding domain (RBD) and the S2 subunit. First, using postmortem brain tissue, we show that the angiotensin converting enzyme 2 or ACE2 (a known binding target for the SARS-CoV-2 spike protein), is ubiquitously expressed throughout various vessel calibers in the frontal cortex. Moreover, ACE2 expression was upregulated in cases of hypertension and dementia. ACE2 was also detectable in primary hBMVECs maintained under cell culture conditions. Analysis of cell viability revealed that neither the S1, S2 or a truncated form of the S1 containing only the RBD had minimal effects on hBMVEC viability within a 48 h exposure window. Introduction of spike proteins to invitro models of the blood-brain barrier (BBB) showed significant changes to barrier properties. Key to our findings is the demonstration that S1 promotes loss of barrier integrity in an advanced 3D microfluidic model of the human BBB, a platform that more closely resembles the physiological conditions at this CNS interface. Evidence provided suggests that the SARS-CoV-2 spike proteins trigger a pro-inflammatory response on brain endothelial cells that may contribute to an altered state of BBB function. Together, these results are the first to show the direct impact that the SARS-CoV-2 spike protein could have on brain endothelial cells; thereby offering a plausible explanation for the neurological consequences seen in COVID-19 patients.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Blood-Brain Barrier/metabolism , Capillary Permeability/physiology , Endothelial Cells/metabolism , Inflammation/metabolism , Matrix Metalloproteinases/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/physiology , Blood-Brain Barrier/drug effects , COVID-19 , Capillary Permeability/drug effects , Cell Adhesion Molecules/drug effects , Cell Adhesion Molecules/metabolism , Cell Survival/drug effects , Dementia/metabolism , Electric Impedance , Endothelial Cells/drug effects , Frontal Lobe/metabolism , Humans , Hypertension/metabolism , In Vitro Techniques , Intercellular Junctions/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lab-On-A-Chip Devices , Matrix Metalloproteinases/drug effects , Primary Cell Culture , Protein Domains , Protein Subunits/metabolism , Protein Subunits/pharmacology , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Spike Glycoprotein, Coronavirus/pharmacology
18.
Eur J Neurol ; 27(12): 2651-2657, 2020 12.
Article in English | MEDLINE | ID: covidwho-799153

ABSTRACT

AIM: The aim of this paper is to describe the clinical features of COVID-19-related encephalopathy and their metabolic correlates using brain 2-desoxy-2-fluoro-D-glucose (FDG)-positron-emission tomography (PET)/computed tomography (CT) imaging. BACKGROUND AND PURPOSE: A variety of neurological manifestations have been reported in association with COVID-19. COVID-19-related encephalopathy has seldom been reported and studied. METHODS: We report four cases of COVID-19-related encephalopathy. The diagnosis was made in patients with confirmed COVID-19 who presented with new-onset cognitive disturbances, central focal neurological signs, or seizures. All patients underwent cognitive screening, brain magnetic resonance imaging (MRI), lumbar puncture, and brain 2-desoxy-2-fluoro-D-glucose (FDG)-positron-emission tomography (PET)/computed tomography (CT) (FDG-PET/CT). RESULTS: The four patients were aged 60 years or older, and presented with various degrees of cognitive impairment, with predominant frontal lobe impairment. Two patients presented with cerebellar syndrome, one patient had myoclonus, one had psychiatric manifestations, and one had status epilepticus. The delay between first COVID-19 symptoms and onset of neurological symptoms was between 0 and 12 days. None of the patients had MRI features of encephalitis nor significant cerebrospinal fluid (CSF) abnormalities. SARS-CoV-2 RT-PCR in the CSF was negative for all patients. All patients presented with a consistent brain FDG-PET/CT pattern of abnormalities, namely frontal hypometabolism and cerebellar hypermetabolism. All patients improved after immunotherapy. CONCLUSIONS: Despite varied clinical presentations, all patients presented with a consistent FDG-PET pattern, which may reflect an immune mechanism.


Subject(s)
Brain Diseases/diagnostic imaging , COVID-19/complications , Aged , Brain Diseases/psychology , Brain Diseases/therapy , COVID-19/therapy , Cerebellar Diseases/diagnostic imaging , Cerebellar Diseases/etiology , Cognition Disorders/etiology , Cognition Disorders/psychology , Female , Fluorodeoxyglucose F18 , Frontal Lobe/diagnostic imaging , Humans , Immunotherapy , Magnetic Resonance Imaging , Male , Mental Disorders/etiology , Mental Disorders/psychology , Middle Aged , Myoclonus/diagnostic imaging , Myoclonus/etiology , Neuropsychological Tests , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Status Epilepticus/etiology , Treatment Outcome
19.
Neuroradiol J ; 33(5): 368-373, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-646969

ABSTRACT

Central nervous system involvement in severe acute respiratory syndrome caused by coronavirus disease 2019 (COVID-19) has increasingly been recognised in the literature, and possible mechanisms of neuroinvasion, neurotropism and neurovirulence have been described. Neurological signs have been described in 84% of COVID-19 intensive care unit patients, and haemostatic abnormalities in such patients may play an important role, with a broad spectrum of neuroimaging findings. This report describes the magnetic resonance imaging neurovascular findings in an acutely ill patient with COVID-19, including perfusion abnormalities depicted in the arterial spin labelling technique.


Subject(s)
Brain/diagnostic imaging , Cerebrovascular Circulation , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Subarachnoid Hemorrhage/diagnostic imaging , Aged , Betacoronavirus , Brain/blood supply , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/physiopathology , Corpus Callosum , Frontal Lobe , Humans , Intracranial Hemorrhages , Magnetic Resonance Imaging , Male , Pandemics , Parietal Lobe , Perfusion Imaging , Pneumonia, Viral/complications , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Spin Labels , Subarachnoid Hemorrhage/complications , Thalamus
20.
Brain Behav Immun ; 88: 940-944, 2020 08.
Article in English | MEDLINE | ID: covidwho-625544
SELECTION OF CITATIONS
SEARCH DETAIL